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Abstract

Audio impersonation has become more accessible due to the rising popularity of machine and deep learning. This report explores how
machine learning can also be used to detect them in real-time. A range of statistical models are evaluated on a custom generated dataset,
considering both detection accuracies and inference times. XGBoost was found to be the best overall model, with a high accuracy of
0.952 and low inference time of 0.016± 0.070 ms. Considering as well the time needed for feature extraction, a theoretical rate of 5 to
7.7 1-second blocks processed per second is determined, indicating the possibility of integrated real-time detection of continuous audio
data. Some results of the RVC process are provided in the Appendix, namely comparing the amplitudes, Mel spectrograms, and Fast
Fourier Transforms (FFT) of the original and synthesized audios. This report is an independent HD task for SIT332 Task 5.2, and has
been approved by the Unit Chair, Dr. Duc Thanh Nguyen.
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1. Introduction

The rise and intertwining of deep learning and computer vi-
sion has led to the possibility of modifying what is deemed reality.
Though a useful novelty, as shown in [1, 2, 3, 4], concerns arise in
the possibility of malicious use by threat actors, such as scam-
oriented impersonations and defamation [5]. Scam phone calls
are one such case, wherein a threat actor uses techniques, such as
Retrieval-based Voice Conversion (RVC), to clone someone else’s
voice in real-time using their own. This is a major security and
privacy concern, especially given how such models and their audio
training data are becoming increasingly publicly accessible.

Motivated by this, Bird & Lotfi [5] propose detection of RVC-
generated audio using statistical classifiers, noting both their high
detection accuracies and low inference times. The dataset gen-
erated by their study, DEEP-VOICE4, is also provided. As an
independent HD task for SIT332, this report aims to explore, an-
alyze, and even extend their approach. The work is structured as
follows:

Section 2 provides a background of RVC, a summary of [5]
(as required), and discusses related work; Section 3 presents the
methodology and considerations applied in data collection, pro-
cessing, and analysis; Section 4 discusses and analyzes observed
results; Section 5 postulates future work; and, finally, we conclude
our work in Section 6.

2. Background and Literature Review

2.1. Retrieval-based Voice Conversation (RVC)

Voice conversion is a popular area in speech synthesis and is
aimed at separating the content features (what is spoken) from
the speaker features (how it is spoken). A voice model first dis-
entangles the linguistic content from acoustic characteristics such
as timbre, pitch, and tone [6, 7]. Deep learning methods, such as
HuBERT [8] and ContentVec [9], are commonly used to extract
these high-level feature representations. An acoustic model then
recreates the target speaker by applying the extracted features on
given content.

Retrieval-based Voice Conversion (RVC) extends this process
by using a retrieval mechanism to enhance the converted voice qual-
ity. During the training process, RVC stores the target speaker’s
acoustic feature representations, and the highly-relevant ones are
retrieved during runtime to guide the inference process. Essen-
tially, the similarity between the speech features of the target and
the given speaker allows the model to more accurately reconstruct
the target speaker’s timbre and vocal characteristics, while preserv-
ing the linguistic content, prosody, and style of the given speaker.
RVC is designed to be deployed in real-time, such as via the RVC
Web GUI1. An overview of the RVC process is presented in Figure
1.

Figure 1: Overview of the RVC pipeline wherein Ryan Gosling’s speech is con-
verted to Margot Robbie’s voice (taken from [5]).

2.2. Main Paper

The main objective in [5] is to use Machine Learning (ML)
to detect DeepFaked audio generated through RVC. The trained
model then predicts incoming audio data via 1-second blocks, alert-
ing the user accordingly. They are motivated by RVC’s ability to



convert short speech samples in real-time, thereby facilitating ma-
licious usage such as in scam calls and misinformation through
impersonation.

To combat this, the authors model their detection strategy in
the same manner. They consider both efficacy and computational
complexity to enable real-time detection, with their proposed sys-
tem demonstrated in Figure 2. For example, they note that while
techniques such as Convolutional Neural Networks (CNNs), Long
Short-Term Memory (LSTMs), and their variants, are strong for
audio data, their complexity limits their inference times. Thus,
they instead focus on classical statistical models.

Audio data is continuous, and transmitted in steams in real-
time contexts, such as phone calls. Thus, in training and inferring,
the authors perform feature extraction on 1-second audio blocks.
They begin by collecting audio data of 8 famous individuals, such
as politicians and celebrities, and are each cropped to a maximum
of 10 minutes. In total, they collected 62 minutes and 22 seconds
of real speech data, mostly from YouTube.

Next, they use an implementation of RVC1 to convert each
individual’s speech into one another. Given the fame of each tar-
get, their voice models (RVC version 2) were retrieved from public
sources such as HuggingFace2 and the AI Hub Discord server3.
This creates a total 56 fake speech data. This obviously skews the
dataset, hence they undersample fake data by random selection to
achieve a 1:1 ratio.

Treating entire 1-second blocks as processed frames, they utilize
Librosa [10] to extract the Chromagram, Spectral Centroid (SC),
Spectral Bandwidth (SB), Spectral Rolloff (SRf), Zero Crossing
Rate (ZCR), Root Mean Square (RMS), and the first 20 Mel-
Frequency Cepstral Coefficients (MFCCs) for a total of 26 features.

Figure 2: Proposed detection and alerting pipeline (taken from [5]).

While the authors provide the resulting dataset4, their data
processing methodology is unclear. For example, the author’s
dataset contains only one Chromagram column, whereas by default
it is normalized into 12 bins, each representing the main notes in
the Chromatic scale of Western music. Likewise, there are 5889
feature rows for both REAL and FAKE labels, each represent-
ing a 1-second block, despite the total length of audio data being
(62 ∗ 60)+ 22 = 3742 seconds long. It can therefore be determined
that the hop length of a given audio, hop(y), between blocks, for
a given sample rate sr(y), is determined by

hop(y) =
3742

5889
× sr(y) = 0.6354× sr(y) (1)

Different statistical classifiers from the sk-learn library [11] are
evaluated and include: Extreme Gradient Boost (XGBoost), Ran-
dom Forest, classic Support Vector Machine (SVM), Stochastic
Gradient Descent (SGD), and K-Nearest Neighbors (KNN). Hyper-
parameterization is used to optimize the models, trained over 10-
fold cross validation based on accuracy score.

XGBoost, boosted at 330 rounds, was found to be the best per-
forming model, with the highest accuracy of 0.994. The model’s
precision, recall, and F scores were found to be 0.995, 0.991, and
0.991, respectively. While the authors boast a low average infer-
ence time of 0.004 ms per given block, they did not include the
time taken to extract its features.

2.3. Related Work
Recent works surveying the rise in DeepFakes stress its increas-

ing availability and detection challenges. Nguyen et al. [12] explore
the efficacy of state-of-the-art tools for the creation and detection
of video DeepFakes, noting that a major challenge in the latter is
the lack of generalization. Likewise, they urge for the adoption
of detection capabilities in social media platforms to mitigate tar-
geted misinformation. Yi et al. [13] explore the merits and demer-
its of dedicated deep-learning and end-to-end detection approaches
against audio DeepFakes, noting too that a lack of generalization
contributes to the overall challenge.

Noting the lack of transparency and explainability of traditional
ML detection, Yu et al. [14] propose fusing raw waveform signals
and spectrograms, using their distributions to determine the like-
lihood of synthetic speech, highlighting their model’s higher de-
tection capabilities with lower performance costs. Zong et al. [15]
propose embedding audio watermarks to protect real speech by sti-
fling DeepFake voice models into learning watermarked patterns.
While their results show how easier it is to detect watermarked
synthetic speech, their method cannot protect currently-available
nor unseen voices.

3. Methodology

3.1. Voice Conversion
Our audio dataset consists of speeches from 10 individuals and

are detailed in Table 1. 5 of them are sourced from the original
dataset provided by the authors in [5], while the rest are sourced
from YouTube and converted to .wav format5. Their RVC (version
2) models were sourced from HuggingFace2.

We use both male and female speakers for diversity. We use
voices of recent United States presidents: Barack Obama, Joe
Biden, and Donald Trump; celebrities: Ariana Grande, Michael
Jackson, Elon Musk, and Taylor Swift; and online personali-
ties: PewDiePie (Felix Kjellberg), Ludwig/MogulMail (Ludwig
Ahgren), and Gawr Gura (real name unknown). We believe that
this extension of the dataset reflects a higher variety of speaking
styles, vocal characteristics, and levels of public exposure. Thus,

1The RVC Python implementation: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI (last accessed Sep, 2025)
2RVC models on HuggingFace: https://huggingface.co/models?other=rvc (last accessed Sep, 2025)
3AI Hub Discord server: https://discord.me/aihub (last accessed Sep, 2025)
4DEEP-VOICE dataset: https://www.DEEP-VOICE.com/datasets/birdy654/deep-voice-deepfake-voice-recognition (last accessed Sep, 2025)
5WavNinja was used: https://wav.ninja (last accessed Sep, 2025)
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our study is more applicable to real-world scenarios, such as com-
bating the increase of impersonation of online figures.

This forms our real speech dataset and is 74 mins and 56 sec-
onds long. Using the ratio determined in 1, this results in ≈ 7069
rows, each representing 1 second of audio. We then train 10 RVC
(version 2) models, each corresponding to an of the individual, and
are fed the audio of the other 9. This results in 90 fake speech files,
which, after feature extraction, we then undersample (via random
selection) to achieve a balanced 1:1 ratio with our real speech.
The pipeline code is also provided, and was run on a T4 GPU
using Google Colab (free).

Some results of the RVC process are provided in the Appendix,
comparing the amplitudes, Mel spectrograms, and FFT of the orig-
inal and synthesized audio. We present only the following speakers
for succinctness: PewDiePie to Gawr Gura in Appendix A and vice
versa in Appendix B, as well as Visal (the author) to both of the
aforementioned in Appendix C (but not the other way around).
The first and second appendices showcase how the RVC process
affects long (6:21 mins), clean (only vocal speech) audio and short
(1:03 mins), noisy (background music) audio, respectively.

Individual Source Audio
Source
RVC
Model

Length

Ariana Grande
"Ariana Grande Accepts
Woman of the Year
Award | Women in Music"6

Hugging
Face2

4:21

Barrack Obama DEEP-VOICE4 10:00
Donald Trump DEEP-VOICE4 10:00
Elon Musk DEEP-VOICE4 10:00
Felix Kjellberg
(PewDiePie)

"Let’s Talk About
Money"7 6:21

Gawr Gura
"Gura’s Excellent
Pep Talk"8 1:03

Joe Biden DEEP-VOICE4 10:00

Michael Jackson
"Michael Jackson ~
Speech about
helping the world"9

3:11

Ludwig Ahgren
(Ludwig/MogulMail) "sad news."10 10:00

Taylor Swift DEEP-VOICE4 10:00

74:56

Table 1: Data collected for training and validation

3.2. Feature Extraction
We use Librosa [10] to extract the same features used in [5].

However, we also chose to keep the 12 bands Chroma bands, ex-
tending our features to a total of 37. As the Chromagram captures
pitch changes, we felt that this would be of significance in classi-
fying whether a given block of audio is real or fake due to the
tendency of DeepFaked audio having abnormal pitch ranges. Like-
wise, since RVC is not a perfect (1-to-1) voice conversion system,
the generated audio can contain residual artifacts or inconsisten-
cies. These may include unnatural blending with ambient noise,
leading to distortions or ‘unnatural sounding’ artifacts that could
serve as additional cues for detecting synthetic speech.

For a given audio file y, we first preserve its sr(y) (using the
sr=None param). We then define the block length bl(y) = sr(y) so

that all processed blocks are equivalent to 1 second. We also define
the hop(y) as in 1, which forms our overlap. Feature extraction is
performed treating each block as an entire frame; this was done by
setting the frame length fl > bl(y) and window length wl = fl.
This is demonstrated in Figure 3. This ensures that the feature
outputs are 1D arrays representing that feature at that point in
time.

The features are concatenated into a single array, represent-
ing a row. This is repeated for each block until the entire audio
file is processed. Finally, all collected rows are transformed into
a dataframe, and labeled either REAL or FAKE. This process is
facilitated by the get_features_row() function. The time taken
to extract features from each block is also averaged and returned.
We note also that this function takes in a time parameter (in sec-
onds) which determines how the blocks are treated. For example,
if a time of 1

3 seconds is passed, then for each block the feature
extraction is performed over 3 frames (i.e., fl = 1

3bl) rather than
the entire block at once, and the resulting outputs, per frame, are
stacked on top another; thus, 3 sequential rows represent features
seen in 1 second of audio. After investigating this approach how-
ever, the models were found to perform better for entire blocks
rather block chunks.

hop(y)

b1

b0

b0 b1b1

y

Figure 3: Splitting the audio into 1 second blocks

3.3. Machine Learning
Due to our emphasis on detection efficacy and inference time,

selected for this study are the following statistical classifiers: XG-
Boost, Random Forest, Light Gradient-Boosting Machine (Light-
BGM), CatBoost, SVM, SGD, Logistic Regression, and Ridge Re-
gression. All of the models were sourced from the SKlearn library.
A seed is used to ensure reproducibility of our study. Likewise, a
fixed random state of 42 is used whenever necessary, such as the
train-test split and model initialization.

We trained the models over 10 folds and also used hyperpa-
rameterization, using KFold and GridSearchCV, respectively, to

6"Ariana Grande Accepts Woman of the Year Award | Women in Music": https://youtu.be/BE9GDcQEIlk?si=cZevVY6aTcwrANxP(last accessed Sep, 2025)
7"Let’s Talk About Money: https://youtu.be/zn0y3Opb8Wk?si=JosJZnJn3a9fcC0I (last accessed Sep, 2025)
8"Gura’s Excellent Pep Talk": https://youtu.be/ogsmJIGb3QM?si=KTAdma4dyq7ZKwdu (last accessed Sep, 2025)
9"Michael Jackson ~Speech about helping the world": https://youtu.be/VvNdv6sVCPo?si=9WTc82dA5kThVfMl (last accessed Sep, 2025)

10"sad news.": https://youtu.be/z2Du27CkXM0?si=_YdKdDD_f-DfAcOt (last accessed Sep, 2025)
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ensure fair overall performance. We thus only present the results
of the best performing model instances, based on the f1 score due
to the binary nature of our study [11]. We note also that, from
the train-test split, we only used the training data during the hy-
perparameter tuning phase, and then validated the models using
the unseen testing data. This was to prevent bias in the resulting
model’s performance.

Alongside traditional metrics, i.e, the accuracy, precision, re-
call, and f1 scores, the authors in [5] also considered the Matthews
Correlation Coefficient (MCC). This metric is useful in considering
all potential correct (TP, TN) and incorrect (FP, FN) predictions
[16], and is calculated via

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN).
(2)

Ranged from -1 to +1, the closer to +1 a model’s MCC is the
better its predictive ability. Additionally, the Receiver Operating
Characteristic Area Under the Curve (ROC-AUC) is also consid-
ered, though this only applies to models that support probabilistic
predictions. Ranged from 0 to 1, the closer to 1 a model’s ROC-
AUC is the better its predictive ability, whereas an ROC-AUC of
0.5 indicates that its predictions are as good as random guessing.

3.4. Data Analysis
To better differentiate our work from [5], in addition to the

Pearson’s Correlation Coefficient (PCC), we also used Principal
Component Analysis (PCA) to observe the correlation of features
and classes of the generated dataset. We present the sorted PCC-
based feature correlation in Figure 5, where the points in orange
represent the absolute value of the magnitude of correlation, with
REAL = 0 and FAKE = 1. We see that the highest correla-
tion magnitudes between feature and class is shown to be the 2nd
MFCC, with a PCC of 0.35. The same observation was made in
[5], though with a PCC of 0.36.

Interestingly, the 2nd MFCC is the lowest when considering
its original negative (blue) values. This suggests that it is the
strongest indicator of the REAL class. The highest correlation
would therefore be attributed to the Spectral Bandwidth, with a
PCC of 0.28, thereby being the strongest indicator of the FAKE
class.
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Figure 5: PCC Feature Correlation

While the PCA is strictly a technique to reduce data dimension-
ality (and, therefore, complexity) and does not directly compute
correlation, its reduced components do reveal their distribution
among classes. The PCA Feature correlations of the dataset in [5]
and ours are presented in Figures 4a and 4b, respectively. We see
that in both datasets, the correlation of features corresponding to
the FAKE class tend to form close clusters while those correspond-
ing to the REAL class are more spread out, thus revealing the
general uniformity and less natural characteristics of RVC-based
audio. Given out work’s higher variety of speakers, these clusters
are larger.

Note also that the features have not been scaled. Their scaled
variants, using the Standard, Min-Max, and Robust Scalers, are
presented in Figures 4c, 4d, and 4e, respectively. This reveals a
greater level of separation between the classes, which should result
in more accurate detections, with the Robust and Min-Max Scalers
showing the best and worst separations of feature correlations, re-
spectively.

The tree-based classifiers were found to perform better on raw
data, while the other classifiers performed best after feature scaling
using the Robust Scaler as they rely on distances and margins that
are tied to the variance in feature sizes. However, it is important
to note that feature scaling adds an extra layer of processing time,
thus these approaches may not be as suited for real-time contexts.

4. Discussion of Results

4.1. Validation Metrics

Presented in Table 2 are the averaged validation metrics of the
evaluated models. The average inference time refers to the time
taken to predict the class of a given 1-second block of speech audio.
For tree-based classifiers, feature importance is also provided.

Unlike [5], the most accurate model was found to be the SVC,
with an accuracy, and averaged precision, recall, and f1 scores, of
0.957. This is slightly higher than the second best performer, XG-
Boost, at 0.952, which was the best model in [5]. However, their
inference times, 0.351 ms and 0.008 ms, respectively, differ by a fac-
tor of 0.351

0.008 = 43.875. Hence, XGBoost performs around 44 times
faster than SVC with relatively low accuracy tradeoffs, which is
critical for real-time detection. Thus, based on these constraints,
we consider XGBoost to be the best model overall.

It should be noted that, while SVC supports probabilistic pre-
dictions (via the probability=True param) we found that it far
longer training times yet performed the same as when this param-
eter was disabled. Hence, we omit SVC’s ROC-AUC.

Among the tree-based classifiers, the majority agree that the
7th MFCC is the most important feature, with the exception of XG-
Boost, which attributed this to the 2nd MFCC. This coincides with
both the earlier PCC analysis and the findings in [5]. Additionally,
both XGBoost and LightBGM agree that the 10th Chroma STFT
is the least important, whereas RandomForest and CatBoost at-
tribute this to the 8th and 11th Chroma STFT, respectively. Thus,
results suggest that pitch changes, specifically the musical notes
G#, A#, and B, are not as relevant for detection as previously
hypothesized.
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Figure 4: Comparison of PCA Feature Correlation (dim=2)

4.2. Averaged Processing Times

To better average the processing time, we run each of the best
model instances 10 times to infer on randomly chosen unseen data,
such as both real and fake audio generated from the authors of
this paper. The means µ and standard deviations σ of the infer-
ence time I (model-specific), feature extraction time F , and scaling
time S (for non-tree classifiers) are presented in Table 3, Figure 6,
and Figure 7, respectively.

Model Inference Time (ms)

XGBoost 0.016± 0.070
LightBGM 0.072± 0.061
RandomForest 0.129± 0.034
CatBoost 0.054± 0.023
kNN 0.074± 0.014
Logistic Regression 0.019± 0.006
Ridge Regression 0.013± 0.009
SVC 0.322± 0.058
SGD 0.014± 0.011

Table 3: Averaged inference times (ms) across models (10 iterations)

The averaged total time T to process a 1-second audio block is
defined by

T = µT ± σT (3)

where

µT =

{
µF + µI if tree-based classifier
µF + µI + µS else

(4)

and

σT =

{√
σ2
F + σ2

I if tree-based classifier√
σ2
F + σ2

I + σ2
S else.

(5)

Taking XGboost as an example, the total processing time would
thus be (163.96+0.016)±

√
33.832 + 0.072 = 163.976±33.82ms or

0.164± 0.03s per 1-second block, which is equivalent to a range of
around 5.06 to 7.68 blocks per second. We believe this rate to be
reasonable to process continuous data streams.
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Model Feature
Scaling

Accuracy
Score

F1
Score Precision Recall MCC ROC−AUC

Average
Inference
Time (ms)

Least
Important
Feature

Most
Important
Feature

Trees

XGBoost (800) No 0.952 0.952 0.952 0.952 0.903 0.990 0.008 10th

Chroma STFT
2nd

MFCC

LightBGM (800) No 0.938 0.938 0.938 0.938 0.876 0.986 0.024 10th

Chroma STFT
7th

MFCC

RandomForest (50) No 0.914 0.914 0.914 0.914 0.827 0.977 0.012 8th

Chroma STFT
7th

MFCC

CatBoost (800) No 0.856 0.853 0.885 0.856 0.741 0.983 0.007 11th

Chroma STFT
7th

MFCC

Distance kNN Yes 0.930 0.930 0.930 0.930 0.860 0.980 0.638 N/A N/A

Regression
Logistic
Regression Yes 0.841 0.841 0.841 0.841 0.682 0.924 0.001 N/A N/A

Ridge
Regression Yes 0.839 0.839 0.839 0.839 0.678 N/A 0.001 N/A N/A

SVM SVC Yes 0.957 0.957 0.957 0.957 0.914 N/A 0.351 N/A N/A
SGD Yes 0.832 0.832 0.832 0.832 0.666 N/A 0.001 N/A N/A

Table 2: Comparison of averaged validation metrics
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Figure 7: Box plot of averaged scaling times (ms) across non-tree models (10
iterations)

5. Future Work

Although our models slightly underperformed compared to [5],
in terms of slightly lower accuracies and slightly higher inference
times, we note that this is due to two main reasons:

1. We extended the feature dimensionality, length, and diversity
of individuals in our dataset. Likewise, our hyperparameter
tuning used training data and was validated using unseen
test data. Therfore, while our metrics are lower, they are
also more realistic.

2. The authors in [5] trained their models on an Intel Core i7
CPU, whereas we only had access to an Intel Core i5 CPU,
thus lowering inference speeds.

Thus, future work should focus on incorporating speech from more
public individuals into the dataset, as we only expanded to 10.
Likewise, future work can look into improving the processing times
by extracting and optimizing only the significant features, as well
as explore the integration of such detection models in real-world
pipelines.

6. Conclusion

The rise of DeepFake technology, such as the RVC technique,
has enabled threat actors to impersonate famous individuals in
both online and real-time offline scam operations. Basing our
work on [5], this study explores how ML to detect against RVC-
generated speech. We employ our own data processing method-
ology, and have extended the speech dataset to include a greater
range of public individuals and features. We found that the XG-
Boost, at 800 rounds, to be the best overall model, with an ac-
curacy score of 0.952 and average inference time of 0.016 ± 0.070
ms, demonstrating both high detection capabilities and low per-
formance costs. Considering as well the time needed for feature
extraction, using the XGBoost model thus results in a theoretical
rate of 5 to 7.7 1-second blocks processed per second, thereby in-
dicating the possibility of real-time detection of continuous audio
data.

Data availability

The code for data collection and model training, as well as the
final generated dataset, can be found at https://deakin365-my.
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sharepoint.com/:f:/g/personal/s223058093_deakin_edu_
au/Et5yr-BQMUdBmI06G9Pd3r0BrfxgNGvL-_M-KBD7pIev8g.
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Appendix A. PewDiePie (Long - 6:21 mins, Clean - only vocal speech) to Gawr Gura

Appendix A.1. Amplitude

(a) Amplitude of original audio

(b) Amplitude of RVC audio

Figure A.8: Amplitude
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Appendix A.2. Mel Spectrogram (sr = original sr, hop_length = 512, n_fft = 2048)

(a) Mel Spectrogram of original audio

(b) Mel Spectrogram of RVC audio

Figure A.9: Mel Spectrogram
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Appendix A.3. Fast Fourier Transform (FFT) (n_fft = 2048, window = ’hann’)

(a) FFT of original audio

(b) FFT of RVC audio

Figure A.10: FFT
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Appendix B. Gawr Gura (Short - 1:03 mins, Noisy - background music) to PewDiePie

Appendix B.1. Amplitude

(a) Amplitude of original audio

(b) Amplitude of RVC audio

Figure B.11: Amplitude
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Appendix B.2. Mel Spectrogram (sr = original sr, hop_length = 512, n_fft = 2048)

(a) Mel Spectrogram of original audio

(b) Mel Spectrogram of RVC audio

Figure B.12: Mel Spectrogram
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Appendix B.3. Fast Fourier Transform (FFT) (n_fft = 2048, window = ’hann’)

(a) FFT of original audio

(b) FFT of RVC audio

Figure B.13: FFT
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Appendix C. My Voice (Short - 0:51 mins, Clean - only vocal speech) to Gawr Gura and PewDiePie

Appendix C.1. Amplitude

(a) Amplitude of original audio

(b) Amplitude of RVC audio (to Gawr Gura)

(c) Amplitude of RVC audio (to PewDiePie)

Figure C.14: Amplitude
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Appendix C.2. Mel Spectrogram (sr = original sr, hop_length = 512, n_fft = 2048)

(a) Mel Spectrogram of original audio

(b) Mel Spectrogram of RVC audio (to Gawr Gura)

(c) Mel Spectrogram of RVC audio (to PewDiePie)

Figure C.15: Mel Spectrogram
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Appendix C.3. Fast Fourier Transform (FFT) (n_fft = 2048, window = ’hann’)

(a) FFT of original audio

(b) FFT of RVC audio (to Gawr Gura)

(c) FFT of RVC audio (to PewDiePie)

Figure C.16: FFT
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